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Abstract  

The point  groups which have C2h as a subgroup are 
frequently observed in crystal data. A random-gener-  
ation model  of  point  groups gives a possible reason 
for the statistical dis tr ibut ion among the point  groups 
in the class of  crystals conta ining elements and alloys. 
By the addi t ion  of  possible symmetry operat ions to 
point  group C2h, new point  groups of higher  sym- 
metry can be generated. The computer  s imulat ion of 
the random-genera t ion  model  seems to expla in  the 
higher  frequencies of  occurrence of  Oh and D6h , the 
lower frequencies of  Cab and C6h and the moderate ly  
high frequencies of  the remain ing  five point  groups 
which have C2h a s  a subgroup. 

The symmetry  of  three-dimensional  periodic structure 
is described by the 230 space groups. The statistical 
distr ibution of  the 230 space groups for crystals may 
aid the ass ignment  of  the symmetry  of  a crystal under  
study (Nowacki ,  Matsumoto & Edenharter ,  1967; 

Bel'skii & Zorkii,  1971; Matsumoto  & Nowacki,  1966; 
Matsumoto,  1988). The n u m b e r  of  space groups that 
should be observed is est imated by a statistical study 
on ordered abundances  (MacKay,  1967). 

Statistical distr ibutions on graphs or algebraic 
structures can be a convenient  tool for various fields 
of  science (Itoh, 1979). A random-genera t ion  model  
of  groups gives a possible reason for the frequent  
observation of  point groups in the structures of  oxide 
and hydroxide  crystals (Itoh, 1986). Here we give 
another  random-genera t ion  model  to explain  the 
statistical distr ibution for the class of  elements and 
alloys (Nowacki ,  Edenharter ,  & Matsumoto,  1967) 
whose structures are closely related to hexagonal  
closest packing or cubic closest packing. The sym- 
metry of  a crystal is de termined by physical  and 
chemical  processes, which are composed of  a large 
number  of  mutual ly  interacting factors. These factors 
may give a reason for the use of  the stochastic model  
for statistical distributions. 

To carry out the statistical study we must  make 
clear the concept  of  the species of  a crystal. Al though 
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there are good databases on crystals, for example 
ICSD, it is not easy to define the species to obtain 
the population for the statistical study. Here we make 
use of the paper by Nowacki, Edenharter & 
Matsumoto (1967), since we could not find a statis- 
tical study following their work. There are 32 crys- 
tallographic point groups for three dimensions. It is 
remarkable that the frequently observed point groups 
have as a subgroup the point group C2h (2/m).  
Although the theory for the phase transition of the 
second kind (Landau & Lifshitz, 1968) suggests a 
random suppression model, the random suppression 
of elements from point groups of higher symmetry 
will not explain this. We make a random-generation 
model to explain this statistical observation. 

Consider a point group X as the initial point group 
and take possible symmetry operations which can be 
added to X at random. Assume the number N of 
operations is given by the probability Pr (N  = n). Add 
the operations to the point group X and we get a 
point group generated by the operations and X. We 
take C2h as the initial point group X. We start from 
a set of four spheres, of equal radius, which are 
mutually tangential with each other. There is one way 
for constructing regular cubic closest packing, using 
the set of spheres, while there are four ways for 
hexagonal closest packing. Hence, there are 
altogether five ways of regular closest packing starting 
from the mutually tangential four spheres. This con- 
sideration will provide a good basis for our stochastic 
model. 

We represent Oh (m3m) and D6h (6/mmm) by 3 x 3 
matrices. Place the eight nodes of the cube at 
(+1, +1, +1). Consider all the possible orthogonal 
transformations which keep the set of eight nodes 
invariant. These transformations are represented by 
48 matrices from the geometrical meaning (Brown, 
Bulow, Neubuser, Wondratschek & Zassenhaus, 
1978). We choose a representation of D6h which has 
the largest number of common matrices with the 48 
matrices. Then the representation of D6h has 12 of 
the 24 matrices which are common to the 48 matrices 
of Oh. The 12 matrices represent the point group 
D3d (3m).  There are four possible such representa- 
tions of D6h. ThUS, we have 96 matrices altogether 
for these representations of Oh and D6h , correspond- 
ing to the above five ways of regular closest packing. 

In the 96C4 possible combinations of four matrices 
out of the 96 matrices, 25 combinations represent the 
point group C2h. Noting that the point group C2h 
consists of 1, 1, 2 and 2, we consider the 25 combina- 
tions of the four elements which represent C2h. Then 
take a combination at random out of these 25 combi- 
nations. Add N elements which are obtained by ran- 
dom sampling with replacement from the 96 matrices 
where the probability is given by a distribution 
Pr (N  = k +  1) --(ak/k!)e -', which is a Poisson distri- 
bution with shift. Consider the point group generated 

Table 1. Random generation model and statistical data 
for elements and alloys 

O b s e r v e d  E x p e c t e d  
Po in t  g r o u p  f r e q u e n c y  f r e q u e n c y  S i m u l a t i o n  

Oh 388 402 1380 
T h 32 37 126 
Drh 217 216 741 
D4h 138 58 199 
C6h 1 18 62 
D3d 36 100 344 
C4h 3 5 18 
O2h 109 83 285 
C2 h 26 31 108 
Totals 950 950 3263 

The observed 181 crystals not listed in this table are distributed in the 
remaining 23 point groups (Nowacki,  Edenharter & Matsumoto, 1967). 

by the C2h and the N elements. We can determine 
the point group by the order of elements, and by the 
trace and the determinant of the representation of 
each element. There are combinations of the matrices, 
taken from the 96 matrices, which do not form a close 
set through our method of generation. We name this 
set of matrices the 33rd group G 3 3 .  

We compare the frequencies among the point 
groups which have C2h as a subgroup with the results 
of simulations in Table 1 for the class of elements 
and alloys (Nowacki, Edenharter & Matsumoto, 
1967). The parameter of the shifted Poisson distribu- 
tion is taken as a =3 .0  to obtain a good fit to the 
data. We carried out 50 000 trials. Of them, 46 737 
trials generated elements which do not form a close 
set by our method of generation of groups, and hence 
do not correspond to any crystal structure. That is to 
say, each of the 46 737 trials generated G 3 3 .  We 
assume that each crystal is a realization of the stochas- 
tic model. Hence, each of the groups obtained by the 
remaining 3263 trials, given in Table 1, is assumed 
to represent the symmetry of a crystal. The expected 
frequencies in Table 1 are taken to be proportional 
to the frequencies obtained by our simulation. Our 
model explains, as given in Table 1, the higher 
frequencies of Oh and D6h , the lower frequencies of 
C4h and C6h and the moderately high frequencies of 
the remaining five point groups. Our model explains 
that, although Th has the same number of elements 
as that of D6h , it has lower frequency. This applies 
also to the case for the D3d and C6h pair and to the 
Dxh and Cah pair. Thus our model seems to explain 
the data fairly well, and hence suggests a possible 
process for each crystal of adapting its symmetry. 
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Abstract 

Conventionally, Penrose tilings with fivefold sym- 
metry are constructed with the aid of two characteris- 
tic rhombic tiles and sets of rules based on either 
matching of markings on the tiles or their subdivision. 
Both these procedures involve decision making when 
tiling is to be done extensively. In the present com- 
munication, a fool-proof method of producing Pen- 
rose tilings using a set of operations that can be 
repeated ad infinitum is described. The steps in the 
present procedure are akin to conventional crystallo- 
graphic operations and can be expressed in simple 
mathematical terms which bring out some interesting 
aspects of Penrose tilings. 

Introduction 

The pioneering work of Penrose (1974) on tiling a 
floor (Gardner, 1977) to generate patterns exhibiting 
fivefold rotational symmetry, extension of these ideas 
to three dimensions by Mackay (1981) and the sub- 
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sequent discovery by Shechtman, Blech, Gratias & 
Cahn (1984) of quasicrystals with icosahedral sym- 
metry have generated world-wide interest. Several 
methods are now available for the generation of two- 
dimensional aperiodic tilings with forbidden rota- 
tional symmetry. These range in approach from the 
empirical matching rules of Penrose, the geometrical 
approach of Sasisekharan (1986) and dualization of 
periodic pentagrids to projection from higher- 
dimensional space (de Bruijn, 1981). The procedure 
of tiling due to Penrose involves assembling two types 
of rhombs, viz a prolate (or thick) rhomb with acute 
angle 217"/5 and an oblate (or thin) rhomb with acute 
angle 17-/5, or a set of kites and darts. For example, 
the process of building an infnitely large tiling with 
these two types of rhombs consists of marking them 
and laying them edge to edge such that the markings 
match according to set rules so that aperiodicity and 
fivefold symmetry are ensured. The matching rules 
are an expression of the self-similarity transformation 
of the Penrose tiling. Hitherto, this transformation 
has been exploited to generate a large cluster of tiles 
from a cluster of a smaller number of tiles obeying 
the matching rules by subdividing each of its rhombs 
according to a set pattern. The resultant tiling then 
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